Parcial - Física de radiaciones 1 – 13 noviembre 2012 – 1 ½ h

(tres problemas es 100%: los resultados numéricos SON IMPORTANTES)

1.

El 40 K ($T_{1/2} = 1,28 \times 10^9$ años) es utilizado para la datación de minerales. Tiene dos modos de decaimiento: por captura electrónica a estados excitados de 40 Ar y por emisión β^- en 40 Ca. Se ha

medido que $\frac{N_{_{\gamma}}}{N_{_{\beta}}}$ =0.12 . Si en cierta muestra de mineral todo el 40 Ar proviene del decaimiento de

 40 K, ¿cuál será la edad del mismo si $\frac{N(^{40}Ar)}{N(^{40}K)}$ =0.5 ?

2.

Considere una población inicial N_0 de núcleos padre que se desintegran con constante de decaimiento total λ . El núcleo padre tiene varios canales de decaimiento por lo que hay varias constantes de decaimiento parcial $\lambda = \lambda_A + \lambda_B + ...$ El núcleo hijo A, a su vez, es inestable con constante λ_2 .

- a. Calcule el tiempo en el que ocurre la máxima actividad del hijo A, y, suponiendo $\lambda_2 > \lambda$, el valor del cociente de actividades entre hijo/padre para tiempos grandes.
- b. Considere los decaimientos β del $^{99}_{42}Mo$ ($T_{1/2}=66,7$ h), que decae 86% en $^{99m}_{43}Tc$ y 14% a un estado excitado de $^{99}_{43}Tc$ que inmediatamente emite un fotón para decaer en el estado base de $^{99}_{43}Tc$. El $^{99m}_{43}Tc$ decae en $T_{1/2}=6,03$ h al estado base del $^{99}_{43}Tc$. Para el hijo $^{99m}_{43}Tc$ calcule los dos valores de la parte anterior y el valor del cociente de actividades en equilibrio transitorio en el caso hipotético en que hubiese sido el único canal del $^{99}_{42}Mo$.

3.

Una solución de ²⁴Na ($T_{1/2}$ = 14,96 h) con una actividad de 2x10³ s⁻¹, se inyecta en un paciente en el que se distribuye uniformemente. Luego de 5 h se mide una actividad en un cm³ de 16 cuentas por minuto. Calcule el volumen de sangre del paciente.

4

Realice el diagrama de decaimiento beta correspondiente al $^{60}_{27}Co$ en $^{60}_{28}Ni$ sabiendo que:

β: 0,313 MeV máx, 0,1 MeV (prom) 99,9%

β: 1,486 MeV máx, 0,63 MeV (prom) 0,1%

γ: 1,173 MeV

γ: 1,332 MeV

 $\Delta_{60\text{Ni}}$ = - 64,468 MeV; $\Delta_{60\text{Co}}$ = - 61,650 MeV